Abstract

The high latitude ionospheric plasma is a difficult medium to describe due to the dependence of its parameters on heliogeophysical conditions. Its large-scale structure is influenced by processes such as magnetospheric convection, plasmaspheric flows of particles and heat, as well as the precipitation of energetic particles in the region of the auroral oval. These processes are non-stationary and their characteristics change significantly during periods of enhanced geomagnetic activity. Therefore, the modelling of the high-latitude ionosphere is associated with the development of a model that has a computationally stable numerical solution at a sufficiently high spatio-temporal resolution. For this purpose, in this work, we have carried out a study of the computational stability of the mathematical model of the high-latitude ionosphere (Eulerian approach) when different integration steps in time and space are specified. It is shown that the ionospheric model retains computational stability at all selected steps, and the results of numerical calculations are qualitatively consistence and describe the main large-scale structural formations of the high-latitude ionosphere. The results show that the developed model can be used in the study of non-stationary processes occurring in the ionospheric plasma, as well as in the study of the ionosphere during magnetic storms and substorms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call