Abstract

On the basis of recent studies, understanding the intimate relationship between normal and leukaemic stem cells is very important in leukaemia treatment. The authors' aim in this work is to clarify and assess the effect of coexistence and interconnection phenomenon on the healthy and cancerous stem cell dynamics. To this end, they perform the analysis of two time-delayed stem cell models in acute myeloid leukaemia. The first model is based on decoupled healthy and cancerous stem cell populations (i.e. there is no interaction between cell dynamics) and the second model includes interconnection between both population's dynamics. By using the positivity of both systems, they build new linear functions that permit to derive global stability conditions for each model. Moreover, knowing that most common types of haematological diseases are characterised by the existence of oscillations, they give conditions for the existence of a limit cycle (oscillations) in a particularly interesting healthy situation based on Poincare-Bendixson theorem. The obtained results are simulated and interpreted to be significant in understanding the effect of interconnection and would lead to an improvement in leukaemia treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.