Abstract
Artificial Intelligence is playing a crucial role in healthcare by enhancing decision-making and data analysis, particularly during the COVID-19 pandemic. This virus affects individuals across all age groups, but its impact is more severe on the elderly and those with underlying health issues like chronic diseases. This study aimed to develop a machine learning model to improve the prediction of COVID-19 in patients with acute respiratory symptoms. Data from 915 patients in two hospitals in Saudi Arabia were used, categorized into four groups based on chronic lung conditions and COVID-19 status. Four supervised machine learning algorithms-Random Forest, Bagging classifier, Decision Tree, and Logistic Regression-were employed to predict COVID-19. Feature selection identified 12 key variables for prediction, including CXR abnormalities, smoking status, and WBC count. The Random Forest model showed the highest accuracy at 99.07%, followed by Decision Tree, Bagging classifier, and Logistic Regression. The study concluded that machine learning algorithms, particularly Random Forest, can effectively predict and classify COVID-19 cases, supporting the development of computer-assisted diagnostic tools in healthcare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.