Abstract

Thin polycrystalline CdTe films can be used as materials for solar cells. The CdTe surface is etched with H3PO4/HNO3 solution to remove soluble Cd compounds and to leave insoluble Te compounds on the surface and thus creating a layer between CdTe and the electrode material. Different analytical methods have been used for studying the effect of the etching procedure relating to the electrode deposition on the CdTe surface. The penetration of phosphorus from the etchant without an intentional CdTe doping may be beneficial for the thin film structure. Phosphorus has been determined by isotope dilution, and cadmium and tellurium by instrumental neutron activation analysis and inductively coupled plasma mass spectrometry in the dissolved samples. All the samples have also been analysed by secondary ion mass spectrometry. It was shown that P penetrates the film. The first 40 nm contains P in a P/Cd atomic ratio of about 0.5. In the next layers the ratio is about 0.1. The etchant leaves a thin Te-enriched layer on the surface of the film. This was detected from the SIMS profile, but not from the diluted nitric acid dissolved fractions because of the low Te solubility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.