Abstract

Cavitation erosion on the wetted surface of hydraulic machinery is directly related to the cavitation behavior. In this paper, the cavitation behavior and cavitation erosion characteristics on the airfoil surface were observed experimentally, and then, image processing methods for quantifying cavitation structure and cavitation erosion were established. Laser‐CCD system was used to obtain the cavitation structure on the airfoil surface and the microtopographies of the cavitation erosion at different magnifications were obtained by SEM. The distribution and shape of cavitation pits were analyzed. An image processing method based on statistical principle was used to analyze the distribution characteristics of the cavitation structure. The mean and mean square value of the cavitation structure were obtained. The average volume and the volume change rate of cavitation cloud in each position of the flow field during a cavitation period were described. According to the characteristics of cavitation pits, an image processing method based on background correction, edge detection, and binary morphology processing was established, and then, the distribution characteristics and the area of the cavitation pits were obtained. Finally, the effectiveness of the methods is verified by the image processing of cavitation pit in different locations on the hydrofoil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.