Abstract

In this work, we study the direct synthesis of DME using CO2-rich syngas, with a CO2/CO ratio similar to that obtained from the gasification of biomass, i.e., 1.9. We used catalytic beds consisting of physical mixtures of the benchmark catalysts used for the synthesis of methanol from syngas and for methanol dehydration to DME, namely Cu/ZnO/Al2O3 and γ-Al2O3, respectively. Our results show that the ratio between each catalytic phase determines the productivity and selectivity to DME, as well CO and CO2 conversions. Thus, higher total carbon conversions were obtained with the catalytic bed with the highest content of the Cu/Zn/Al2O3 phase. The presence of γ-Al2O3 allows to exceed the equilibrium conversion of CO for the syngas to methanol synthesis. The highest DME productivity is obtained with the catalytic bed containing equal amounts of both catalytic phases. In addition, we also show that other reaction variables such as temperature, pressure, and contact time also play an important role in terms of DME productivity. The presence of a high fraction of CO2 in the syngas results in a high production of H2O, which after long times on stream result in the deactivation of the Cu/ZnO/Al2O3 catalytic phase due to the sintering of the copper particles. The in situ removal of H2O via the addition of an H2O sorbent, zeolite 3A, into the catalytic bed, results in a significant enhancement of both carbon conversion and DME productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.