Abstract

The influence of geomagnetic storms on the atomic oxygen greenline (557.7nm) dayglow emission in thermosphere is studied during solar active and solar quiet conditions. This study is primarily based on the photochemical model with inputs obtained from experimental observations and empirical models. The updated rate coefficients, quantum yields and related cross-sections have been used from experimental results and theoretical studies. This study is presented for a low latitude station Tirunelveli (8.7°N, 77.8°E), India. The volume emission rate (VER) has been calculated using densities and temperatures from the empirical models. The modeled VER shows a positive correlation with the Dst index. The VER also shows a negative correlation with the number densities of O, O2, and N2. The VER, calculated at peak emission altitude, exhibits depletion during the main phase of the storm. The altitude of peak emission rate is unaffected by the geomagnetic storm activity. The study also reveals that the peak emission altitude depends on the F10.7 solar index. The peak emission altitude moves upward as the value of F10.7 solar index increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call