Abstract

This paper addresses the development of an attitude control system that steers control moment gyros (CMGs) based on deep reinforcement learning (DRL) for agile spacecraft. The proposed DRL-based attitude control system learns CMG steering strategies to achieve the desired attitude, thus potentially bypassing the singularity issues inherent in the CMG cluster. In particular, it is designed in two-phases to apply the DRL technique efficiently. In the first phase, the attitude control is performed based on DRL up to a certain tolerance, after which it switches to conventional control and steering law for stabilization in the second phase. The rapid pointing capability of the proposed DRL-based attitude control system is demonstrated for an agile spacecraft equipped with pyramid-type single gimbal control moment gyros. Additionally, in realistic scenarios of pointing multiple targets on the ground, the momentum vector recovery that the CMG system needs to consider is also briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.