Abstract

This article proposes a new unit distribution based on the power-logarithmic scheme. The corresponding cumulative distribution function is defined by a special ratio of power and logarithmic functions that is dependent on one parameter. We show that this function benefits from great flexibility characterized by a large selection of convex and concave shapes. The other key functions are determined and studied. In particular, we show that the probability density function may take on different decreasing or U shapes, and the hazard rate function has a wide panel of U shapes. These functional capabilities are rare for a one-parameter unit distribution. In addition, we prove certain stochastic order results, provide the expression of the quantile function via the Lambert function, some interesting distributional results, and give simple expressions for the ordinary moments, mean, variance, skewness, kurtosis, moment generating function and incomplete moments. Subsequently, a basic statistical approach is described, to show how the new distribution can be applied in a data analysis scenario. Finally, complementary mathematical findings are presented, yielding new integrals linked to the Euler constant via some well-known moments properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call