Abstract

A dual-frequency laser interferometer has been developed based on a low-performance commercial interferometer. An optical resolution of 1.24 nm and a nanometer-scale accuracy have been achieved by using unique techniques to obtain an optical subdivision factor of 1/8. A method for reducing static positioning errors was also shown. The measurement of a free-falling body was performed to test the maximum achievable target velocity of the device. The experimental setup for measuring the static positioning errors was also given. The new interferometer could be widely used in nanometer-scale fabrications and measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.