Abstract
The mathematical formulation of heat conduction problem along the rod involving rates of change with respect to two independent variablels, namely time and length leads to a partial differential equation of parabolic type. The initial and boundaries conditions are known. Finite difference approximations are used as a numerical method approach how to solve heat conduction problem. In this paper, numerical scheme of finite difference should be applied to construct and compute the temperature within a rod by explicit method, implicit method and Crank-Nicolson method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have