Abstract

Thin film silicon solar cells have the potential to considerably decrease the cost of photovoltaic. To increase the conversion efficiency of thin film solar cells, nano-sized structures, such as nanoparticle deposition at the front end, were proposed. In the present study, spherical metal nanoparticles such as gold (Au) and silver (Ag) were deployed at the front of the silicon solar cell. The effect of metal nanoparticles on the absorption enhancement factor of the thin film solar cells was investigated using Lumerical Finite Difference Time Domain (FDTD) solutions. Also the influence of geometrical parameters of spherical nanoparticles on absorption enhancement factor was examined. The maximum absorption enhancement factor was achieved by optimizing the geometrical parameters of nanoparticles. The structure with Ag nanoparticles at the front end of the silicon solar cell exhibits higher absorption enhancement factor than the structure with Au nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call