Abstract
As the IC technology is evolving very rapidly, the feature size of the device has been migrating to sub-nanometre regime for achieving the high packing density. To continue with further scaling of ICs, some novel devices such as multiple-gate silicon-on-insulator (SOI) devices, Gate-All-Around (GAA) nanowire and Nanotube MOSFETs have been proposed by researchers in recent years. The short channel transistor below 10 nm needs to have ultra-sharp junctions at source and drain ends with the channel region. The creation of such a sharp junction is quite challenging process from fabrication point of view. Therefore, junctionless transistors (JLT) were proposed to eradicate junction’s related issues, exhibit full CMOS functionality. The multigate junctionless transistors have been proposed, designed and fabricated. This paper illustrated basic working mechanism and behaviour of the various single and multi-gate junctionless MOSFETs. Junctionless nanowires transistor with single circular gate and gate material engineered techniques has also been explained. From simulation results, it has been observed that junctionless Nanotube GAA MOSFET has shown superior electrical behaviour over the Nanowire GAA MOSFET. Junctionless GaAs-Nanotube MOSFET has shown tremendous response over Junctionless Si-Nanotube MOSFET in terms of leakage and ON current. Junctionless GaAs-Nanotube MOSFET may be observed as alternate candidate for future CMOS applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.