Abstract
To analyse the role of IS1216E in the dissemination of the phenicol-oxazolidinone-tetracycline resistance gene poxtA in an Enterococcus faecium clade A1 isolate. MICs were determined by broth microdilution. The poxtA-positive isolate was typed by MLST. The two plasmids were characterized by PCR, conjugation, S1-PFGE, Southern blot hybridization and WGS analysis. The presence of translocatable units (TUs) was examined by PCR and sequencing. Isolate E1077 contains the 217661 bp conjugative plasmid pE1077-217 and the 23710 bp mobilizable plasmid pE1077-23. pE1077-217 harbours erm(B), aac(A)-aph(D), aadE, spw, lsa(E), lnu(B), aphA3 and dfrG, whereas pE1077-23 carries a Tn6657-like transposon containing poxtA and fexB. pE1077-23 was apparently formed by an IS1216E-mediated composite transposon-plasmid fusion event, involving a replicative transposition process. Conjugation experiments showed that pE1077-23 is mobilizable by pE1077-217. Moreover, a novel 31742 bp plasmid, pT-E1077-31, was found in a transconjugant. WGS analysis indicated that pT-E1077-31 was formed by the integration of a Tn6657-derived, IS1216E-based translocatable unit, which carried fexB and poxtA, into a copy of pE1077-23. This study showed the presence of two cointegrate formation events in the formation and spread of a poxtA/fexB-carrying plasmid in E. faecium. One was the integration of a transposon into a plasmid while the other was the integration of a TU into a different site of the same type of plasmid-borne transposon from which it originated. In both events, IS1216E played a major role, suggesting that IS1216E-mediated transposition and translocation processes aid the dissemination and persistence of important antimicrobial resistance genes, such as poxtA, among enterococci.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have