Abstract
In cemented carbides cobalt serves as a binding agent between tungsten carbide grains. The zinc process exhibits an important technique to recycle these materials. The decomposition takes place at temperatures of 900–1000 °C and the role of gaseous zinc in this process is poorly investigated. A specific experimental set-up was used to ensure that only gaseous zinc reacts with solid cobalt. By varying the temperatures, times and Zn:Co ratios, it was possible to ensure the formation of intermetallic phases. According to the binary CoZn phase diagram, phases of different composition are formed, depending on temperature and pressure. It was found that not all of the indicated phases occur simultaneously, but several do. With the support of the findings from the layer evolution between two solid as well as solid and liquid substances, it is explained which layers may form in the CoZn system. The multiple phase formation depends on diffusitivity and other factors such as the different melting points, the atomic radii and the occurrence of cracks. Of these, the occurrence of cracks across or between two layers represents the most likely reason.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Refractory Metals and Hard Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.