Abstract

The wear of tungsten carbide taper pin reamers used to ream holes in a composite structure of aluminium alloy plate overlaying a plate of ultra-high strength steel was examined under the scanning electron microscope. The predominant process of wear was by attrition, which involved the mechanical detachment of individual or groups of tungsten carbide grains from the reamers by both the swarf and workpiece material. This process of attrition wear was initiated by the removal of the cobalt binder phase, resulting in the undermining and subsequent removal of tungsten carbide grains. A mechanism is described for explaining how the cobalt binder phase is initially removed, and the means by which tungsten carbide grains are then removed are discussed. Consequent on the removal of tungsten carbide grains some cobalt binder phase attached to these grains is also removed, and this subsequently becomes an important mechanism of cobalt binder phase removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.