Abstract
The mechanism of aerobic resistance to the quinone-containing anti-tumour agents mitomycin C (MMC) and porfiromycin (PM) has been investigated using non-transformed human cells. One of the cell strains used (3437T) was derived from an afflicted member of a cancer-prone family. This cell strain had been shown previously to be six times more resistant to the cytotoxic effects of these agents under aerobic but not hypoxic conditions when compared to a cell strain derived from an unrelated, normal donor (GM38). Differences could not be detected in the ability of cell sonicates prepared from either cell strain to produce alkylating species under aerobic conditions using a 4-( p-nitrobenzyl)pyridine assay. However, using 3H-labelled PM to monitor rapid drug uptake and subsequent accumulation due to drug metabolism, results were obtained indicating that the resistant cell strain (3437T) was deficient in an enzymatic pathway capable of metabolizing these compounds under aerobic but not hypoxic conditions. Dicumarol, an inhibitor of the quinone reductase DT-diaphorase (EC 1.6.99.2), decreased aerobic drug accumulation and cytotoxicity in the control cell strain, but did not alter the lack of accumulation noted in the resistant cell strain. Under hypoxic conditions, dicumarol increased cytotoxicity and drug accumulation in both cell strains. The mechanism of this enhanced cytotoxicity remains unclear. These results suggested that the resistant cells were deficient in the enzyme DT-diaphorase, a potential activator of PM. Enzymatic assays confirmed this and revealed no alterations in cytochrome P450 reductase (EC 1.6.2.4) activity or glutathione content. No protein characteristic of DT-diaphorase was detected in the resistant cell strain using a polyclonal rabbit-anti-rat antibody raised against this enzyme. Southern blot analysis using a rat DT-diaphorase cDNA probe demonstrated differences between the normal and resistant cell strains in the restriction fragment patterns. The present results are consistent with the hypothesis that decreased DT-diaphorase levels are causally associated with PM and MMC resistance in these cells under aerobic exposure conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have