Abstract

The density functional theory (DFT)-based Becke's three parameter hybrid exchange functional and Lee-Yang-Parr correlation functional (B3LYP) calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations have been performed to understand the stability of different anions inside fullerenes of various sizes. As expected, the stability of anion inside the fullerene depends on its size as well as on the size of the fullerene. Results show that the encapsulation of anions in larger fullerenes (smaller fullerene) is energetically favorable (not favorable). The minimum size of the fullerene required to encapsulate F(-) is equal to C(32). It is found from the results that C(60) can accommodate F(-), Cl(-), Br(-), OH(-), and CN(-). The electron density topology analysis using atoms in molecule (AIM) approach vividly delineates the interaction between fullerene and anion. Although F(-)@C(30) is energetically not favorable, the BOMD results reveal that the anion fluctuates around the center of the cage. The anion does not exhibit any tendency to escape from the cage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.