Abstract
1. We have investigated the in vitro cardiac actions of flosequinan and of its major metabolite in man, BTS 53554. 2. Positive inotropic activity was seen with flosequinan in guinea-pig isolated ventricles, the threshold concentration for effect being less than 1 x 10(-5) M. BTS 53554 was approximately half as potent as the parent compound. 3. In guinea-pig working whole hearts flosequinan increased left ventricular dp/dtmax, indicating a positive inotropic action. This effect was accompanied by increases in heart rate, cardiac output and stroke volume. 4. The virtual complete inhibition of inotropic responses to flosequinan and BTS 53554 by carbachol suggests that these responses are adenosine 3':5'-cyclic monophosphate (cyclic AMP)-mediated. 5. Flosequinan was shown to increase calcium inward current in guinea-pig ventricle, an action consistent with a cyclic AMP involvement in the response. 6. The inotropic activity of flosequinan was not potentiated by the selective phosphodiesterase (PDE) III inhibitor SK&F 94120, a result which indicates that flosequinan does not increase cyclic AMP concentrations via stimulation of adenylate cyclase. 7. Flosequinan inotropic responses were potentiated by rolipram, a selective PDE IV inhibitor, a result consistent with flosequinan being itself a PDE III inhibitor. 8. Biochemical studies with purified enzymes confirmed that flosequinan and BTS 53554 are relatively selective inhibitors of PDE III. 9. A comparison of pharmacological and biochemical data for both flosequinan and BTS 53554 indicates that their PDE III inhibitory potency is sufficient to account for their inotropic activity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have