Abstract

Arachidonic acid, cellulase, CuSO4, a sonicate of Phytophthora infestans mycelium and a spore suspension of Penicillium chrysogenum all elicited the formation of the sesquiterpenoid phytoalexins lubimin, 3-hydroxylubimin and rishitin in fruit cavities of Datura stramonium. 3-Hydroxylubimin was the predominant phytoalexin formed after treatment of the fruits with arachidonic acid, cellulase and the P. infestans preparation. Copper sulphate was a potent elicitor of lubimin but not 3-hydroxylubimin. The fungus P. chrysogenum metabolized lubimin and 3-hydroxylubimin to 15-dihydrolubimin and 3-hydroxy-15-dihydrolubimin respectively, both in fruit cavities inoculated with spores of this fungus and in pure culture. The 15-dihydrolubimin formed in the fruits by the fungus was further metabolized (by the fruits) to both isolubimin and 3-hydroxy-15-dihydrolubimin. The precursor-product relationships between all of the subject compounds was investigated by feeding experiments with (3)H-labelled compounds. 2-Dehydro-[15-(3)H1]lubimin was rapidly and efficiently incorporated into lubimin and may be the direct precursor of lubimin in planta. 3-Hydroxy[2-(3)H1]lubimin was incorporated into the nor-eudesmane rishitin but 10-epi-3-hydroxy[2-(3)H1]lubimin was not. An updated scheme for the biosynthesis and metabolism of lubimin and related compounds in infected tissues of solanaceous plants is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call