Abstract

The results of an in situ synthesis of refractory metal–intermetallic composite (RMIC), Mo-16Cr-4Si (wt pct) multiphase alloy and its characterization, are presented in this study. The alloy was prepared from the oxides of molybdenum and chromium by their co-reduction with Si metal powder as a reductant. The exothermic nature of these reactions resulted in the formation of consolidated composite as a product in a single step. The thermodynamic aspects of exothermic reactions were studied by thermogravimetry/differential thermal analyzer. As-reduced alloys were remelted by arc melting and heat treated to obtain a homogenous microstructure. The evolution of phases and microstructures qA studied by X-ray diffraction, scanning electron microscopy, and energy-dispersive spectrum analysis. The multiphase alloy consisted of Mo3Si and discontinuous (Mo, Cr) (ss) phase with a volume percentage of 28 pct. The synthesized alloys were characterized with respect to composition, phases, microstructure, hardness, and oxidation behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.