Abstract

Mechanical property evaluation of composite solid rocket propellants is used as a quick quality control tool for propellant development and production. However, stress-strain curves from uni-axial tensile testing can be utilised to assess the shelf-life of propellants also. Composite propellants (CP) of two varieties cartridge-loaded (CLCP) and case-bonded (CBCP) are utilized in rocket and missile applications. Both classes of propellants were evaluated for mechanical properties namely tensile strength, modulus and percentage elongation using specimens conforming to ASTM D638 type IV at different ageing time. Both classes of propellants show almost identical variation in various mechanical properties with time. Tensile strength increases with time for both classes of propellants and percentage elongation reduces. Initial modulus is also found to decrease with time. Tensile strength is taken as degradation criteria and it is observed that CLCP has slower degradation rate than CBCP. This is because of two facts–(i) higher initial tensile strength of CLCP (1.39 MPa) compared to CBCP (0.665 MPa) and (ii) lower degradation rate of CLCP (0.0014 MPa/day) with respect to CBCP (0.0025 MPa/day). For the studied composite propellants, a degradation criterion in the form of percentage change in tensile strength is evaluated and shelf life for different degradation criteria is tabulated for quick reference. Defence Science Journal, 2012, 62(2), pp.90-94 , DOI:http://dx.doi.org/10.14429/dsj. 62.773

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.