Abstract

ZnO nanoparticles with an average particle size of 27 nm were fabricated using a microwave-assisted sol–gel method in the presence of ethylene glycol. The nanoparticles were characterized by X-ray diffraction, Monshi’s equation, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The band gap energy of the nanoparticles was measured to be 3.27 eV by UV–Vis absorption and reflection spectroscopy. Photocatalytic activity of the synthesized nanoparticles was assessed by degrading nitrophenol in aqueous solution under UV-C irradiation. The effects of initial nitrophenol concentration, amount of photocatalyst, and of pH on the photodegradation process were investigated. Degradation samples were analyzed by UV–Vis spectroscopy. Nitrophenol was removed by 98 % within 240 min. The degradation kinetics were studied and fitted well to pseudo-first-order and Langmuir–Hinshelwood models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call