Abstract
Half-cell structures of solid oxide fuel cells (SOFCs) with a thin and dense electrolyte layer of 8YSZ supported by a thick and porous NiO–8YSZ anode precursor structure were reduced in a gas mixture of 5% H2–95% Ar at 800°C for selected time periods in order to fabricate cermets with desired microstructure and composition, and to study their effects on the elastic properties at ambient and reactive atmospheres. It appears that 2h of exposure to the reducing conditions is enough to reduce ∼80% of NiO with an enhanced porosity value of 35%. The Ni–8YSZ cermet phase formation in the anode was analyzed with X-ray diffraction (XRD) in correlation with its microstructure. The elastic properties were determined after the reduction, at room and elevated temperatures using the impulse excitation technique. At room temperature the decrease in the Young's modulus was about 44% (after 8h of reduction) and can be attributed mainly to the changes in the microstructure, particularly the increase in porosity from ∼12% to 37%. Young's moduli of the as-received precursor and reduced anodes were evaluated as a function of temperature in air and reducing atmosphere. The results were explained in correlation to the initial porosity, composition and oxidation of Ni at the elevated temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.