Abstract
In this research, the removal of lead from the aqueous solution was investigated using natural nontoxic zeolite (clinoptilolite) as a low-cost adsorbent in order to reduce human exposure to it. The clinoptilolite zeolite obtained from the Semnan area was characterized by X-ray diffraction pattern, FTIR spectroscopy and scanning electron microscopy (SEM). The central composite design (CCD) defined under the response surface methodology (RSM) was used for designing the experiments and analyzing the sorption of lead. Three parameters of contact time (43.07-101.93 min), initial concentration (508-3006 mg/L) and temperature (20-51˚C) were applied to optimize the removal percentage of lead by zeolite. It was found that the initial concentration is the most important parameter affecting the removal percentage of lead, followed by the temperature of process. The optimum values of initial concentration, contact time and temperature were found to be 2750 ppm, 82.87 min and 65°C for 99.81% removal of lead, respectively, with a high desirability of 0.990. The adsorption data fitted the Freundlich adsorption model better than the Langmuir model, with the maximum sorption capacity of the clinoptilolite zeolite for Pb(II) equaling 136.99 (mg/g).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.