Abstract

The thermal decomposition of nitrocellulose (NC) 12.1% N, has been studied with regard to kinetics, mechanism, morphology and the gaseous products thereof, using thermogravimetry (TG), differential thermal analysis (DTA), IR spectroscopy, differential scanning calorimetry (DSC) and hot stage microscopy.The kinetics of the initial stage of thermolysis ofNC in condensed state has been investigated by isothermal high temperature infrared spectroscopy (IR). The decomposition ofNC in KBr matrix in the temperature range of 142–151°C shows rapid decrease in O−NO2 band intensity, suggesting that the decomposition of NC occurs by the rupture of O−NO2 bond. The energy of activation for this process has been determined with the help of Avrami-Erofe'ev equation (n=1) and is ≈188.35 kJ·mol−1. Further, the IR spectra of the decomposition products in the initial stage of thermal decomposition ofNC, indicates the presence of mainly NO2 gas and aldehyde.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.