Abstract
Impact of the electron cyclotron range of frequency wave (ECRF) on the internal transport barriers (ITBs) in a weak shear (WS) plasma has been investigated in JT-60U. The fundamental O-mode ECRF of 110 GHz injected obliquely (co-current drive) from the low field side is used. It is observed that the ion temperature (Ti) ITB in a WS plasma can be degraded by ECRF. It is clarified for the first time that the degradation depends increasingly on the EC power (PEC) but decreasingly on the plasma current (Ip). Moreover it is confirmed that ECRF affects the toroidal rotation (Vt) indirectly and results in the flattening of Vt(ρ) and therefore the radial electric field (Er) profiles regardless of the direction of the target Vt(ρ), peaking co or counter direction (relative to the Ip direction). Furthermore, it is recently found that Ti and Vt in the whole ITB region are affected with almost no delay from the EC onset even with off-axis EC deposition. These results indicate that EC injection unveiled a semi-global structure that characterizes Ti ITB in a WS plasma.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have