Abstract

Recently, considerable interest has been shown in the study and analysis of immobilized cell reactors. One of the major uses of such a reactor system is expected to be in ethanol production from carbohydrates. One distinct disadvantage of this system is carbon dioxide gas holdup associated with unsteady-state temperature distribution across the reactor. Taking into account the earlier published data and assuming steady-state-substrate balance, and unsteady-state energy balance, and an average gas holdup of 20% with the heat retained by the gas neglected, the average reaction rate in the differential element was computed. Finally, a mathematical model to predict steady-state temperature profile along the reactor was developed. It was verified with experimental data obtained from an immobilized yeast reactor column (1 m x 14.5 cm). The experimental data fit well those computed from the model within an accuracy of 5%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call