Abstract

Spheroids of intestinal cells (Caco-2) were used to evaluate the adhesion/invasion ability of Listeria monocytogenes (pathogen) and Lactobacillus sakei 1 (potential probiotic). Besides, transcriptomic analyses of Caco-2 cells in three dimensional cultures were done, with the aim of revealing possible host-foodborne bacteria interactions. Result of adhesion assay for L. monocytogenes in Caco-2 spheroids was 22.86 ± 0.33%, but it was stimulated in acidic pH (4.5) and by the presence of 2% sucrose (respectively, 32.56 ± 1.35% and 33.25 ± 1.26%). Conversely, the invasion rate of L. monocytogenes was lower at pH 4.5, in comparison with non-stressed controls (18.89 ± 1.05% and 58.65 ± 0.30%, respectively). L. sakei 1 adhered to Caco-2 tridimensional cell culture (27.30 ± 2.64%), with no invasiveness. There were 19 and 21 genes down and upregulated, respectively, in tridimensional Caco-2 cells, upon infection with L. monocytogenes, which involved immunity, apoptosis; cytoprotective responses, cell signalling-regulatory pathways. It was evidenced despite activation or deactivation of several pathways in intestinal cells to counteract infection, the pathogen was able to hijack many host defense mechanisms. On the other hand, the probiotic candidate L. sakei 1 was correlated with decreased transcription of two genes in Caco-2 cells, though it stimulated the expression of 14 others, with diverse roles in immunity, apoptosis, cytoprotective response and cell signalling-regulatory pathways. Our data suggest the use of tridimensional cell culture to mimic the intestinal epithelium is a good model for gathering broad information on the putative mechanisms of interaction between host and bacteria of importance for food safety, which can serve as a basis for further in-depth investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call