Abstract

AbstractFlat fibers and hollow fibers were prepared through the high‐speed melt spinning of poly(ethylene terephthalate) (PET), and the structures of these fibers were compared with those of circular fibers. The cross‐sectional shape of each fiber changed to a dull shape in comparison with that of the respective spinning nozzle. The change in the cross‐sectional shape was slightly suppressed with an increase in the take‐up velocity. There was a significant development of structural variation in the cross section of flat fibers in that the molecular orientation and crystallization were enhanced at the edge. Despite the difference in the cross‐sectional shape, the structural development of flat, hollow, and circular fibers with increasing take‐up velocity showed almost similar behavior. Considering that the tensile stress at the solidification point of the spin line is known to govern the structure development of high‐speed spun PET fibers, it was speculated that the effects of the enhancement of cooling and air friction on the tensile stress at the solidification point cancel each other. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1575–1581, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.