Abstract
The peroxidatic activity of hemoglobin (Hb) is known to be enhanced when this hemoprotein is bound to haptoglobin (Hp). The peroxidatic reaction (H2O2, guaiacol as donor) has been kinetically studied (Steady-state) in the presence of free or rabbit-haptoglobin bound human hemoglobin and some of its derivatives, all in ferricyano-form. With free Hb+ CN, we observed linearity of Lineweaver and Burk plots in a wide range of concentrations, the donor's behaviour was therefore assumed to obey the Michaelis-Menten mechanism. When Hp-Hb+ CN is the enzyme, the donor's behaviour is more complicated, analysis shows the existence of two kinds of donor's binding sites. The possibility whether this behaviour might correspond to the intrinsic properties of Hb chains, as revealed after combination with Hp, was examined. The peroxidatic activity of free and Hp-bound alpha and beta chains of Hb were studied. The alpha chains of Hb combine with Hp whereas the beta chains fail to do so. In order to make useful comparisons, the peroxidatic activity of Hp-bound alpha and beta chains were studied by the use of Hp-semihemoglobin complexes where the semihemoglobins carried heme on only one type of chain (alpha or beta). Results did not show an evident correlation between the activities of the two free or bound types of chains and those of the two classes of binding sites revealed in Hp-Hb+ CN. Moreover, it appeared that the heme-free complementary chain might influence the activity of the heme-carrying alpha or beta chain in semihemoglobins and Hp-semihemoglobin complexes. The binding or protoporphyrin on free and Hp-bound semihemoglobins leads to species which exhibit structures close to that of Hb and Hp-Hb complex respectivley. Results of studies on these derivatives brought up new interesting data : when the porphyrin ring alone is bound to the heme deficient chains (alpha or beta), in Hp-semihemoglobin complexes, the same peculiar behaviour, already observed with Hp-Hb complex, is found again. The structural implications of these results are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have