Abstract

The g factors and the hyperfine structure constants for the octahedral interstitial Mn2+ and Cr+ impurities in silicon are theoretically studied using the perturbation formulas of these parameters for an octahedral 3d5 cluster. In the calculations, both the crystal-field and charge transfer contributions are taken into account in a uniform way, and the related molecular orbital coefficients are quantitatively determined from the cluster approach. The theoretical g factors and the hyperfine structure constants are in good agreement with the experimental data. The charge transfer contribution to the g-shift (≈g-gs, where gs ≈ 2:0023 is the spin only value) is opposite (positive) in sign and about 51% - 116% in magnitude as compared with the crystal-field one for Mn2+ and Cr+, respectively. Nevertheless, the charge transfer contribution to the hyperfine structure constant has the same sign and about 12% - 19% that of the crystal-field one. Importance of the charge transfer contribution shows the order Cr+ < Mn2+ due to increase of the impurity valence state in the same host, especially for the g factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call