Abstract

The spin Hamiltonian parameters and defect structures are theoretically studied for the substitutional Mn2+ at the core of CdSe nanocrystals and in the bulk materials from the perturbation calculations of spin Hamiltonian parameters for trigonal tetrahedral 3d5 clusters. Both the crystal-field and charge transfer contributions are taken into account in the calculations from the cluster approach. The impurity-ligand bond angles are found to be about 1.84° larger and 0.10° smaller in the CdSe:Mn2+ nanocrystals and bulk materials, respectively, than those (≈109.37°) of the host Cd2+ sites. The quantitative criterion of occupation (at the core or surface) for Mn2+ in CdX (X = S, Se, Te) nanocrystals is presented for the first time based on the inequations of hyperfine structure constants (HSCs). This criterion is well supported by the experimental HSCs data of Mn2+ in CdX nanocrystals. The previous assignments of signals SI as Mn2+ at the core of CdS nanocrystals are renewed as Mn2+ at the surface based on the above criterion. The present studies would be helpful to achieve convenient determination of occupation for Mn2+ impurities in CdX semiconductor nanocrystals by means of spectral (e.g., HSCs) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.