Abstract

The toxicological effects of single-walled carbon nanotubes (SWCNTs) were investigated after intratracheal instillation in male Wistar rats over a 15-day period using metabonomic analysis of 1H (nuclear magnetic resonance) NMR spectra of blood plasma and liver tissue extracts. Concurrent liver histopathology examinations and plasma clinical chemistry analyses were also performed. Significant changes were observed in clinical chemistry features, including alkaline phosphatase, total protein, and total cholesterol, and in liver pathology, suggesting that SWCNTs clearly have hepatotoxicity in the rat. 1H NMR spectra and pattern recognition analyses from nanomaterial-treated rats showed remarkable differences in the excretion of lactate, trimethylamine oxide, bilineurin, phosphocholine, amylaceum, and glycogen. Indications of amino acid metabolism impairment were supported by increased lactate concentrations and decreased alanine concentrations in plasma. The rise in plasma and liver tissue extract concentrations of choline and phosphocholine, together with decreased lipids and lipoproteins, after SWCNTs treatment indicated a disruption of membrane fluidity caused by lipid peroxidation. Energy, amino acid, and fat metabolism appeared to be affected by SWCNTs exposure. Clinical chemistry and metabonomic approaches clearly indicated liver injury, which might have been associated with an indirect mechanism involving nanomaterial-induced oxidative stress.

Highlights

  • Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure and categorized as single-walled (SWCNTs) and multi-walled nanotubes

  • Effects of SWCNTs on biochemical indicators of rat liver function After intratracheal instillation for 15 days, rat plasma AST, ALB, ALT, ALP, total protein (TP), and total cholesterol (TC) values were measured as indicators of liver function

  • The ALB and TP concentrations in the SWCNTs-H group decreased compared with the SWCNTs-L group (p < 0.05, Table 1)

Read more

Summary

Introduction

Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure and categorized as single-walled (SWCNTs) and multi-walled nanotubes. By virtue of their unique properties, SWCNTs have been demonstrated as promising nanomaterials for a wide range of applications. Various groups have independently reported toxicological studies on SWCNTs, both in vitro and in vivo. These results have mainly focused on pulmonary toxicity, cytotoxic effects, inflammatory response, and genotoxicity [3,4,5,6,7,8,9]. The studies on SWCNTs leading to hepatotoxicity in animals have been limited in scope [10,11], and they only assessed the effects of SWCNTs on reactive oxygen species induction and various hepatotoxicity markers (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), LPO, and liver morphology) in the mouse model

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.