Abstract

Neutrino-nucleus elastic scattering ($\nu {\rm A}_{el}$) provides a unique laboratory to study the quantum-mechanical (QM) coherency effects in electroweak interactions. The deviations of the cross-sections from those of completely coherent systems can be quantitatively characterized through a coherency parameter $\alpha ( q^2 )$. The relations between $\alpha$ and the underlying nuclear physics in terms of nuclear form factors are derived. The dependence of cross-section on $\alpha ( q^2 )$ for the various neutrino sources is presented. The $\alpha ( q^2 )$-values are evaluated from the measured data of the COHERENT CsI and Ar experiments. Complete coherency and decoherency conditions are excluded by the CsI data with $p {=} 0.004$ at $q^2 {=} 3.1 {\times} 10^{3} ~ {\rm MeV^2}$ and with $p {=} 0.016$ at $q^2 {=} 2.3 {\times} 10^{3} ~ {\rm MeV^2}$, respectively, verifying that both QM superpositions and nuclear many-body effects contribute to $\nu {\rm A}_{el}$ interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.