Abstract

The integration of PZT and SBT film-based capacitors with Si integrated circuit technology requires the use of processing steps that may degrade the performance of individual device components. Hydrogen annealing to remove damage in the Si FET adversely affects both PZT and SBT, although the mechanisms of degradation are different. We have used Mass spectroscopy of recoiled ions (MSRI), X-ray diffraction (XRD), Raman spectroscopy and electrical characterization to study the mechanisms of hydrogen-induced degradation in these two materials. The mechanism responsible for degradation in SBT during hydrogen annealing appears to be hydrogen-induced volatilization of Bi from the near-surface region during film growth. Although there is a similar, but smaller, loss of Pb in PZT, the resulting change in stoichiometry is not responsible for the degradation of the ferroelectric properties. Raman spectroscopy reveals that PZT films exposed to hydrogen exhibit evidence for the formation of polar hydroxyl [OH−] bonds, which can block the movement of ions in the lattice and inhibit polarization. The possible sites for the incorporation of hydrogen are discussed in terms of ionic radii, and crystal structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.