Abstract

AbstractIt is known that the forming gas (N2-H2 mixture) annealing process required for microcircuit fabrication results in an unacceptable electrical degradation of SrBi2Ta2O9 (SBT) ferroelectric capacitors due mainly to the interaction of H2 with the ferroelectric layer of the capacitor. We have found a strong relationship between changes in the surface composition of the ferroelectric layer and the electrical properties of SBT capacitors as a result of hydrogen annealing. Mass spectroscopy of recoiled ions (MSRI) analysis revealed a strong reduction in the Bi signal as a function of exposure to hydrogen at high temperatures (∼500°C). The Bi signal reduction correlates with Bi depletion in the SBT surface region. Subsequent annealing in oxygen at temperatures in the range of 700–800°C resulted in the recovery of the MSRI Bi signal, corresponding to the replenishment of Bi in the previously Bi-depleted surface region. XRD analysis (probing the whole SBT film thickness) showed little difference in the XRD spectra of the SBT films before and after hydrogen and oxygen-recovery annealing. The combined results of the MSRI and XRD analyses can be interpreted as an indication that the degradation of the electrical properties of the SBT capacitors, after hydrogen annealing, is mainly due to the degradation of the near surface region of the SBT layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.