Abstract
Material erosion, migration, mixing, dust formation, and co-deposition were investigated on plasma-facing materials in the experimental advanced superconducting tokamak (EAST). The test samples (TSs) of molybdenum (Mo), tungsten (W), and carbon (C) were irradiated during EAST operations. All exposed TS surfaces are modified by erosion and deposition processes resulting in the formation of thin layers containing a mixture of PFCs (Mo, W, Cu, Cr, Fe) and light elements (Li, C, Ca, N, O). The majority of chemical species are in a layer of thickness <650–900 nm. The particle size and structure of co-deposition were observed on each TS. Depth profiling by laser-induced breakdown spectroscopy (LIBS) suggests the presence of local and global impurities on the TSs resulting from the plasma-wall interaction (PWI). The processes involved in the PWI that caused erosion of EAST materials are heat flux and high energy excited impurity particles. The material is sputtered from the first wall plasma-facing components. Erosion and deposition processes occur simultaneously in the EAST. The migrated impurities get deposited globally on remote surfaces. A crack was observed in one of the W TSs due to a high heat load. The spectral intensity of co-deposition and substrate continuously changed during successive laser shots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.