Abstract

During a five-year period, components of the thylakoid membrane in needles of the second generation of undamaged and damaged trees of Norway spruce were studied at three different mountain sites in West Germany. Visible signs of damage at these sites are a yellowing of the light-exposed sides of the needles as well as the loss of needles. The goal of this study was to determine damage-induced alterations in composition and physiological reactions of the thylakoid membranes in spruce needles. In order to meet this purpose, contents of chlorophyll a and b, electron transport rate of photosystem II, contents of the D 1 protein, cytochrome f, as well as P-700 were measured. The chlorophyll content in the needles of the damaged spruce trees was significantly lower than in the needles of the undamaged trees. In addition to this, the typical annual course of chlorophyll content was exclusively observed in the needles of the undamaged spruce trees. If related to dry weight, a drastic reduction of the electron transport rate and of the redox components of the thylakoid membrane was observed due to damage, indicating a degeneration of the photosynthetic membranes. The contents of D1 protein and the photosynthetic electron transport rates were also markedly reduced in the needles of the damaged trees, when related to chlorophyll content of thylakoids, suggesting an early and particular impairment of photosystem II. The comparison of spruce trees showing different signs of damage demonstrates that certain biochemical parameters concerning the photosynthetic membranes (chlorophyll, cytochrome f, ratio photosystem II/I) reflect the extent of damage and are suitable for an early indication of a beginning, but still invisible damage of spruce trees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call