Abstract

Resonances of H alpha, H beta, and HN (amide) protons have been assigned in the NMR spectrum for ten residues in a region of beta-sheet structure of lysozyme. The assignments were achieved primarily by interpretation of nuclear Overhauser effects in conjunction with spin decoupling. The HN hydrogens involved in main-chain hydrogen bonding were found to exchange slowly with D2O solvent, although one of the most slowly exchanging HN hydrogens is not classified as being involved in a hydrogen bond in the crystal structure. Spin-spin coupling constants between H alpha protons and HN and H beta protons correlated well with values predicted from the crystal structure by means of the Karplus relationship. For no residues are the coupling constant discrepancies greater than 2.5 HZ. This indicates that for the residues studied here the torsion angles phi and chi 1 defined in the crystal structure describe accurately, generally well within 20 degrees, those for the average solution state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.