Abstract
The study of 2,2′-bipyridyl adsorption on the surface of highly regular MCM-41 silica at 300 and 130 K was carried out by the 15N NMR spectroscopy. It was shown that at 300 K the adsorbed molecules were involved in the processes of isotropic reorientation accompanied by the formation and rupture of hydrogen bonds with the surface-located hydroxy groups. Each molecule of 2,2′-bipyridyl forms no more than one hydrogen bond at a time, and their surface density is about one molecule per 1 nm2 of the surface. At 130 K 2,2′-bipyridyl forms a monolayer on the surface of silica including about 1.6 molecule per 1 nm2. In this monolayer each molecule forms a hydrogen bond with one hydroxy group and prevents the interaction of the other bipyridyl molecules with one more hydroxy group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.