Abstract

This paper presents a conceptual analysis for students’ images of graphs and their extension to graphs of two-variable functions. We use the conceptual analysis, based on quantitative and covariational reasoning, to construct a hypothetical learning trajectory (HLT) for how students might generalize their understanding of graphs of one-variable functions to graphs of two-variable functions. To evaluate the viability of this learning trajectory, we use data from two teaching experiments based on tasks intended to support development of the schemes in the HLT. We focus on the schemes that two students developed in these teaching experiments and discuss their relationship to the original HLT. We close by considering the role of covariational reasoning in generalization, consider other ways in which students might come to conceptualize graphs of two-variable functions, and discuss implications for instruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.