Abstract

In this paper, we introduce a novel deep learning method for dental panoramic image segmentation, which is crucial in oral medicine and orthodontics for accurate diagnosis and treatment planning. Traditional methods often fail to effectively combine global and local context, and struggle with unlabeled data, limiting performance in varied clinical settings. We address these issues with an advanced TransUNet architecture, enhancing feature retention and utilization by connecting the input and output layers directly. Our architecture further employs spatial and channel attention mechanisms in the decoder segments for targeted region focus, and deep supervision techniques to overcome the vanishing gradient problem for more efficient training. Additionally, our network includes a self-learning algorithm using unlabeled data, boosting generalization capabilities. Named the Semi-supervised Tooth Segmentation Transformer U-Net (STS-TransUNet), our method demonstrated superior performance on the MICCAI STS-2D dataset, proving its effectiveness and robustness in tooth segmentation tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call