Abstract
AbstractCurrently, software projects require a significant amount of time, effort and other resources to be invested in software testing to reduce the number of code defects. However, this process decreases the efficiency of software development and leads to a significant waste of workforce and resources. To address this challenge, researchers developed various solutions utilising deep neural networks. However, these solutions are frequently challenged by issues, such as a vast vocabulary, network training difficulties and elongated training processes resulting from the handling of redundant information. To overcome these limitations, the authors proposed a new neural network‐based model named HopFix, designed to detect software defects that may be introduced during the coding process. HopFix consists of four parts: data preprocessing, encoder, decoder and code generation components, which were used for preprocessing data, extracting information about software defects, analysing defect information, generating software patches and controlling the generation process of software patches, respectively. Experimental studies on Bug‐Fix Pairs (BFP) show that HopFix correctly fixed 47.2% (BFPsmall datasets) and 25.7% (BFPmedium datasets) of software defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.