Abstract
Cross-project defect prediction (CPDP) is an attractive research area in software testing. It identifies defects in projects with limited labeled data (target projects) by utilizing predictive models from data-rich projects (source projects). Existing CPDP methods based on transfer learning mainly rely on the assumption of a unimodal distribution and consider the case where the feature distribution has one obvious peak. However, in actual situations, the feature distribution of project samples often exhibits multiple peaks that cannot be ignored. It manifests as a multimodal distribution, making it challenging to align distributions between different projects. To address this issue, we propose a balanced adversarial tight-matching model for CPDP. Specifically, this method employs multilinear conditioning to obtain the cross-covariance of both features and classifier predictions, capturing the multimodal distribution of the feature. When reducing the captured multimodal distribution differences, pseudo-labels are needed, but pseudo-labels have uncertainty. Therefore, we additionally add an auxiliary classifier and attempt to generate pseudo-labels using a pseudo-label strategy with less uncertainty. Finally, the feature generator and two classifiers undergo adversarial training to align the multimodal distributions of different projects. This method outperforms the state-of-the-art CPDP model used on the benchmark dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.