Abstract

Investigations of surface roughness effects on the structure, dynamics and rheology of a molecular fluid (hexadecane) confined between solid (gold) surfaces, through the use of large-scale molecular dynamics simulations, reveal a remarkable sensitivity to the confining surface morphology. A most significant reduction of the ordering propensity is found in films confined by stationary rough surfaces with a consequent strong suppression of solvation forces and the development of liquid-like dynamic and response characteristics. When the rough-surface boundaries are set in motion at a high shear rate, the interfacial layers of the film stick to the adjacent solid boundaries, resulting in partial slip inside the film with the development of shear stress in the viscous molecular fluid, unlike the case of atomically flat crystalline boundaries where slip of the confined film at the boundaries is accompanied by vanishingly small shear stress in the film. These results are discussed in the context of the effect of roughness on the boundary conditions used in modeling fluid flow past surfaces, and they suggest that morphological patterning of surfaces could provide ways for controlled modifications of frictional processes in thin-film lubricated nanotribological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.