Abstract

The present review surveys the results of X-ray diffraction studies of large stoichiometric transition metal clusters containing from 20 to 145 atoms in metal cores surrounded by ligand shells (72 compounds). Structures of such clusters have fragments of close packings (face-centered cubic (f.c.c.), hexagonal close (h.c.p.), and body-centered cubic (b.c.c.) packings) characteristic of crystalline bulk metals as well as mixed packings (f.c.c./h.c.p.), local close packings with pentagonal symmetry, and strongly distorted “amorphous” packings. The observed packing types, their distortions, and the relationship between the atomic structures of metal cores and the atomic radial distribution functions (RDF) are discussed. The structural principles established for the large clusters are applied to analysis of the experimental RDF for metal nanoparticles determined by X-ray diffraction and EXAFS spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.