Abstract

Clp-family proteins are prototypes for studying the mechanism of ATP-dependent proteases because the proteolytic activity of the ClpP core is tightly regulated by activating Clp-ATPases. Nonetheless, the proteolytic activation mechanism has remained elusive because of the lack of a complex structure. Acyldepsipeptides (ADEPs), a recently discovered class of antibiotics, activate and disregulate ClpP. Here we have elucidated the structural changes underlying the ClpP activation process by ADEPs. We present the structures of Bacillus subtilis ClpP alone and in complex with ADEP1 and ADEP2. The structures show the closed-to-open-gate transition of the ClpP N-terminal segments upon activation as well as conformational changes restricted to the upper portion of ClpP. The direction of the conformational movement and the hydrophobic clustering that stabilizes the closed structure are markedly different from those of other ATP-dependent proteases, providing unprecedented insights into the activation of ClpP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.