Abstract
ATP-dependent Clp protease (ClpP), a highly conserved serine protease in vast bacteria, could be converted into a noncontrollable enzyme capable of degrading mature proteins in the presence of acyldepsipeptides (ADEPs). Here, we design such a gain-of-function mutant of Staphylococcus aureus ClpP (SaClpP) capable of triggering the same level of dysfunctional activity that occurs upon ADEPs treatment. The SaClpPY63A mutant degrades FtsZ in vivo and inhibits staphylococcal growth. The crystal structure of SaClpPY63A indicates that Asn42 would be an important domino to fall for further activation of ClpP. Indeed, the SaClpPN42AY63A mutant demonstrates promoted self-activated proteolysis, which is a result of an enlarged entrance pore as observed in cryo-electron microscopy images. In addition, the expression of the engineered clpP allele phenocopies treatment with ADEPs; inhibition of cell division occurs as does showing sterilizing with rifampicin antibiotics. Collectively, we show that the gain-of-function SaClpPN42AY63A mutant becomes a fairly nonspecific protease and kills persisters by degrading over 500 proteins, thus providing new insights into the structure of the ClpP protease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.