Abstract

DLC films ranging from 5 to 180 nm in thickness have been prepared by plasma-based ion implantation (PBII) with C on Si. The structures of the films were studied with XPS and Raman spectroscopy. The nanohardness and the intrinsic stress of the films were measured. Dry sliding wear experiments have been carried out, using a ball-on-disc tester, to investigate the tribological properties of DLC films against alumina balls, employing various normal applied loads and reciprocating frequencies. For comparison, DLC films prepared by plasma-assisted chemical vapor deposition (PACVD) on Si were also investigated. The results show that the films prepared by PBII exhibit more significant improvement in tribological properties than the films prepared by PACVD because the former present higher sp 3/sp 2 ratio, higher hardness and lower stress than the latter. The effects of the film thickness, the applied loads and the reciprocating frequencies on the tribological properties are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.